Math 261
 Fall 2023

Lecture 21

Feb 19-8:47 AM

1) Evaluate $\lim _{\theta \rightarrow 0} \frac{\theta}{\cos \theta}=\frac{0}{\cos 0}=\frac{0}{1}=0, ~$
2) Evaluate $\lim _{\theta \rightarrow 0} \frac{\sin ^{2} \theta}{\theta}=\frac{\sin ^{2} \theta}{0}=\frac{0^{2}}{0}=\frac{0}{0}$ I.F.

$$
\begin{aligned}
\lim _{\theta \rightarrow 0}\left(\frac{\sin \theta}{\theta} \cdot \sin \theta\right) & =\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \cdot \lim _{\theta \rightarrow 0} \sin \theta \\
& =1 \cdot \sin 0 \\
& =1 \cdot 0=0
\end{aligned}
$$

3) Evaluate

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x}{\cos \left(\frac{\pi}{2}-x\right)} & =\frac{0}{\cos \left(\frac{\pi}{2}-0\right)} \\
& =\frac{0}{\cos \frac{\pi}{2}}=\frac{0}{0} \text { I.F. }
\end{aligned}
$$

Recall

$$
\cos (A-B)=\cos A \cos B+\sin A \sin B
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x}{\frac{\cos \frac{\pi^{0}}{2} \cos x}{0}+\underbrace{\sin \frac{\pi^{0}}{2} \operatorname{Sin} x}_{0}} \sin x_{1}^{1} \\
& =\lim _{x \rightarrow 0} \frac{x}{\sin x}=\lim _{x \rightarrow 0} \frac{1}{\frac{\sin x}{x}}=\frac{1}{1}=1 \\
& \frac{a^{x}}{a} \\
& \begin{array}{l}
\cos \left(\frac{\pi}{2}-x\right)=\frac{b}{c} \\
\sin x=\frac{b}{c}
\end{array} \Rightarrow \cos \left(\frac{\pi}{2}-x\right)=\operatorname{Sin} x \\
& \lim _{x \rightarrow 0} \frac{x}{\cos \left(\frac{\pi}{2}-x\right)}=\lim _{x \rightarrow 0} \frac{x}{\sin x}=\cdots=1
\end{aligned}
$$

If Co functions of Complementary angles are equal

$$
\begin{aligned}
\text { Total } & 90^{\circ} \\
\text { ex: } \tan 30^{\circ} & =\cot 60^{\circ} \\
\operatorname{Sec} 25^{\circ} & =\operatorname{Cs} 65^{\circ} \\
\operatorname{Sin} x & =\cos \left(90^{\circ}-x\right)
\end{aligned}
$$

Oct 4-10:29 AM

Evaluate | $\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos ^{2} x}=\frac{0^{2}}{1-\cos ^{2} 0}=\frac{0}{0}$ IF. | |
| ---: | :--- |
| $=\lim _{x \rightarrow 0} \frac{x^{2}}{\sin ^{2} x}$ | $=\lim _{x \rightarrow 0}\left(\frac{x}{\sin x}\right)^{2}$ |
| | $=\left[\lim _{x \rightarrow 0} \frac{x}{\sin x}\right]^{2}$ |
| | $\left.=1^{2}=1\right]$ |

Evaluate $\lim _{x \rightarrow \infty} \frac{2 x-3}{3 x-2}=\frac{\infty}{\infty}$ I.F.

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\frac{2 x}{x}-\frac{3}{x}}{\frac{3 x}{x}-\frac{2}{x}}=\lim _{x \rightarrow \infty} \frac{2-\frac{3}{x}}{3-\frac{2}{x}} \\
& =\frac{2-\lim _{x \rightarrow \infty} \frac{3}{x}}{3-\lim _{x \rightarrow \infty} \frac{2 \infty}{x}}=\frac{2-0}{3-0}=\frac{2}{3}
\end{aligned}
$$

Evaluate $\lim _{x \rightarrow \infty} \frac{\pi x}{2-3 x}=\frac{\infty}{-\infty}$ I.F.

$$
\lim _{x \rightarrow \infty} \frac{\frac{\pi x}{x}}{\frac{2}{x}-\frac{3 x}{x}}=\lim _{x \rightarrow \infty} \frac{\pi}{\frac{2}{\frac{2}{}^{x}}-3}=-\frac{-\pi}{3}
$$

what about

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \operatorname{Sin}\left(\frac{\pi x}{2-3 x}\right)=\operatorname{Sin}\left(\frac{-\pi}{3}\right)=-\operatorname{Sin} \frac{\pi}{3}=-\frac{\sqrt{3}}{2} \\
& \text { Recall } \operatorname{Sin}(-\alpha)=-\operatorname{Sin} \alpha
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\operatorname{Cos}\left(\frac{1}{x}\right)}{x} \\
& \text { Radian Evaluate } \\
& \text { Pick } x=100 \\
& \frac{\cos \left(\frac{1}{100}\right)}{100}=.0099995 \\
& \text { Pick } x=1000 \\
& \begin{aligned}
\frac{\cos \left(\frac{1}{1000}\right)}{1000} & =9.9 \times 10^{-4} \\
& =.00099 \ldots
\end{aligned}
\end{aligned}
$$

as $x \rightarrow \infty \quad \frac{\cos \frac{1}{x}}{x} \rightarrow 0$
Try to evaluate

$$
\lim _{x \rightarrow \infty} \frac{\cos \left(\frac{1}{x}\right)}{x}
$$

Oct 4-11:04 AM
find ign of the tan. line to the graph of $f(x)=\sqrt{x}+1$ at $x=4$.

$$
\begin{aligned}
& (4,3) \\
& f(x)=\sqrt{x}+1 \quad f(x)=x^{1 / 2}+1 \\
& f_{m}^{\prime}(x)=\frac{d}{d x}\left[x^{1 / 2}+1\right]=\frac{d}{d x}\left[x^{1 / 2}\right]+\frac{d}{d x}[1] \\
& \\
& =\frac{1}{2} \sqrt{4}=\frac{1}{4} \\
& \begin{array}{l}
\frac{1}{2}-1 \\
y-0=\frac{1}{2} x^{-1 / 2} \\
y-3=m\left(x-x_{1}\right) \\
y-\frac{1}{4}(x-4) \rightarrow y=\frac{1}{4} x+2
\end{array}
\end{aligned}
$$

Class QE 10
find equation of the tangent line in slope-Int. form to the graph of $f(x)=\sqrt[3]{x}-2$ at $x=8$.

$$
f_{m}=f^{\prime}(8)=\frac{1}{3 \sqrt[3]{8^{2}}}=\frac{1}{3 \sqrt[3]{64}}=\frac{1}{12}
$$

$$
f(x)=\sqrt[3]{x}-2 \quad f(x)=x^{1 / 3}-2
$$

$$
f^{\prime}(x)=\frac{1}{3} x^{1 / 3-1}-0=\frac{1}{3} x^{-2 / 3}=\frac{1}{3 x^{2 / 3}}=\frac{1}{3 \sqrt[3]{x^{2}}}
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-0=\frac{1}{12}(x-8) \rightarrow y=\frac{1}{12} x-\frac{8}{12} \rightarrow y=\frac{1}{12} x-\frac{2}{3}
$$

